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The numerical dissipation operating in a specific spectral multidomain method model
developed for the simulation of incompressible high Reynolds number turbulence in dou-
bly periodic domains is investigated. The method employs Fourier discretization in the hor-
izontal directions and the discretization in the vertical direction is based on a Legendre
collocation scheme local to each subdomain. Both spatial discretizations are characterized
by either no or near-negligible artificial dissipation. In high Reynolds number simulations,
which are inherently under-resolved, stability of the numerical scheme is ensured through
spectral filtering in all three directions and the implementation of a penalty scheme in the
vertical direction. The dissipative effects of these stabilizers are quantified in terms of the
numerical viscosity, using a generalization of the method previously employed to analyze
numerical codes for the simulation of homogeneous, isotropic turbulence in triply periodic
domains. Data from simulations of the turbulent wake of a towed sphere are examined at
two different Reynolds numbers varying by a factor of twenty. The effects of the stabilizers
are found to be significant, i.e. comparable, and sometimes larger, than the effects of the
physical (molecular) viscosity. Away from subdomain interfaces, the stabilizers have an
expected dissipative character extending over a range of scales determined by timestep
and the degree of under-resolution, i.e. Reynolds number. At the interfaces, the stabilizers
tend to exhibit a strong anti-dissipative character. Such behavior is attributed to the inher-
ently discontinuous formulation of the penalty scheme, which suppresses catastrophic
Gibbs oscillations by enforcing C0 and C1 continuity only weakly at the interfaces.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Incompressible turbulent flows are governed by the Navier–Stokes equations
ou
ot
þ u � ru ¼ � 1

q0
rpþ mr2uþ F; ð1Þ

r � u ¼ 0; ð2Þ
where uðx; tÞ is the velocity field, ui ¼ ðu1;u2;u3Þ ¼ ðu; v;wÞ; m is the kinematic viscosity, p is the pressure, q0 is the density
(assumed constant in this study) and F is a forcing.
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In solving numerically Eqs. (1) and (2) for increasing Reynolds numbers1 one quickly encounters a difficulty that resolving
all physically relevant scales of motion is not possible because of a demanding scaling of computational work as Reynolds num-
ber grows [38]. If an attempt is made to numerically solve the governing equations with a resolution inadequate to capture all
active modes of freedom the numerics become unstable or, if no instability is encountered, the obtained solution may be phys-
ically inaccurate. In practice, these difficulties are addressed in two distinct ways. One is based on modeling of the effects of
unresolved modes on the resolved ones using knowledge of the physics of turbulence. This leads to modified equations contain-
ing explicit turbulence modeling terms as in Reynolds Averaged Navier–Stokes (RANS) and Large Eddy Simulations (LES) tech-
niques. Reviews of such physically motivated turbulence modeling methods are provided in [38,32,37,34,12]. Another focuses
on monitoring and controlling instabilities using procedures of numerical nature such as filtering, employing explicit or implicit
artificial dissipation and adding hyperviscosity terms [4,5,19,6]. Both approaches often can be characterized as an introduction
of an additional dissipation into the equations. This is usually obvious for the turbulence modeling approaches because they are
most frequently based on the eddy viscosity concept. For the numerical stabilization methods, particularly implicit as in the
Monotonically Integrated LES (MILES) [3,21], it is less apparent. In MILES one discretizes directly Navier–Stokes equations
(1) and (2) using higher-order non-oscillatory methods, often referred to as monotonicity or shape preserving, shock capturing,
or briefly, monotone schemes; e.g. total variation diminishing, TVD, flux-corrected-transport, FCT, and various flux-limited and
sign-preserving schemes [44,49,23]. The MILES method is based on the observation that truncation errors in such discretizations
of Navier–Stokes equations introduce numerical dissipation with the implicit effects of the discretization qualitatively similar to
the effects of the explicit turbulence models. This similarity, observed in a number of individual simulations, led to the emer-
gence of a class of methods currently known simply as Implicit LES (ILES). A modern review of the subject can be found in a
monograph edited by Grinstein et al. [20].

The success of a particular ILES method depends critically on how well the numerical dissipation approximates the actual
SGS dissipation due to turbulence physics. Yet despite its importance only recently has a method been proposed to quantify
the numerical dissipation of stabilization procedures in terms of the numerical eddy viscosity [13]. The method has been
used [13,14] to quantify the properties of the implicit dissipation acting in a specific non-oscillatory finite volume solver
MPDATA [41]. It has also been employed in a task of designing a numerical scheme with prescribed dissipative properties
[27]. In both cases analysis was performed for isotropic turbulence simulations in domains with triply periodic boundary
conditions. This paper is motivated by the recognition that the numerical dissipation is ubiquitous in numerical simulations
of high Reynolds number flows and, consequently, by the need to develop more general tools that would allow to analyze it
for flows other than isotropic turbulence. We will focus here on a nominally high-order spectral multidomain/element
scheme that was developed for a specific problem of simulating stratified wakes.

When high-order accuracy spectral/spectral element discretization schemes based on orthogonal polynomials are em-
ployed, the artificial dissipation associated with the truncation error is either non-existent (Fourier trigonometric polynomi-
als) or diminishes exponentially with increasing order of polynomial approximation (Legendre and Chebyshev polynomials)
[5]. In a Direct Numerical Simulation (DNS), which is intrinsically well-resolved, use of such high-order weakly/non-dissipa-
tive schemes enables the highly accurate evaluation of dissipation and mixing at the smallest scales of the flow, where
molecular viscosity is the only damping mechanism. Nevertheless, to extend the range of governing parameters where such
methods can be applied to produce numerically stable and physically realistic results in the framework of under-resolved
fluid flow simulations, various numerical procedures are used. Numerical stability is ensured through explicit spectral filter-
ing (or its surrogate, a hyperviscous operator of the same order introduced in the governing equation) [33,29] which is suf-
ficient when a Fourier discretization is used. If an element-based discretization is employed in one or more directions,
typically using Legendre polynomials, the stability enabled by spectral filtering is further buttressed through a discontinuous
formulation, i.e. discontinuous Galerkin [17] or a penalty multidomain collocation scheme [24,8].

In this higher-order variant of the MILES approach, the numerical viscosity associated with spectral filtering is described
as a function of N�ðp�1Þ [19,16], where N is the order of polynomial approximation and p is the filter order, with no physical
units attached to it [19,16]. In work using a hyperviscous operator, the numerical viscosity has been alternatively defined
as ULp�1=Rep [47], where U and L are characteristic velocity and lengthscales of the flow, respectively, and Rep is an exter-
nally imposed quantity set to 10�33, i.e. below machine precision. In simulations of shock-turbulence interactions Cook and
Cabot [6] introduce grid dependent numerical viscosities with coefficients optimized empirically to fit a number of test
problems.

Since the above stabilization techniques have generally a dissipative character, it is natural to inquire whether their ef-
fects offset the advantages afforded by weakly dissipative/non-dissipative spatial discretizations. Specifically, it is of interest
to examine how these effects compare with the effects of an actual molecular dissipation. This question can be conveniently
reformulated as a comparison between the numerical and the molecular viscosity, because the latter is constant in a given
simulation. However, the stabilization techniques rarely have the same form as the molecular viscous term so a direct com-
parison of an artificial and a molecular viscosity is not possible. Also, as noted above, the numerical viscosity optimized for a
given scheme may not have an unambiguous measure of its units to allow comparison with its molecular counterpart. More-
over, a dependence of the numerical viscosity on spatial scale can not be easily inferred. This paper attempts to address these
shortcomings by extending the numerical eddy viscosity analysis applied to MPDATA [13,14] (in triply periodic domains) to
1 The Reynolds number may be defined here in terms of some characteristic geometric lengthscale and large-scale velocity.
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a spectral multidomain method (in a domain with one non-periodic direction) that uses penalty techniques and spectral fil-
tering to achieve stable results in numerical simulations of high Reynolds number incompressible flows.

It should be emphasized that, although desirable, a rigorous mathematical analysis leading to detailed parameterizations
of numerical viscosity in under-resolved spectral multidomain penalty method-based simulations as a function of Reynolds
number, order of polynomial approximation N, subdomain size h and filter order p cannot be easily accomplished. Although
such an analysis may be feasible in the context of a linear advection/diffusion equation or a single non-linear equation (e.g.
Burgers or Korteweg-DeVries) with analytically prescribed initial conditions, its application to the incompressible Navier–
Stokes equations is made significantly more complex by equation coupling, boundary conditions and geometry, large-scale
forcing and turbulent initial conditions. This paper has the more modest objective of outlining a procedure for estimating the
numerical viscosity, and in the process allowing a direct comparison with the molecular viscosity, for high-order schemes
(designed for domains with one non-periodic direction) using numerical stabilization techniques. The example considered
in this paper provides a quantitative appreciation of the dissipative contributions of spectral filtering and penalty methods
to a specific set of simulations of turbulent wakes [11]. Such an appreciation is expected to allow a more robust assessment
of the capability of the stabilized spectral multidomain scheme under consideration to simulate fluid flow phenomena that
cannot be simulated by lower order methods, e.g., the physics of localized regions with nearly inviscid dynamics at high Rey-
nolds numbers. This capability has already been demonstrated by the observation of secondary instabilities in stratified tur-
bulent wakes [10] and instabilities of internal solitary wave-induced boundary layers [9], phenomena which corresponding
simulations based on low-order finite difference schemes [15,43] have been unable to capture. Finally, the analysis method
can be easily extended to other codes if a baseline ‘‘non-dissipative” simulation (defined and described in Section 5) can be
constructed.
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Fig. 1. Streamwise truncated Oxz section of the numerical grid employed in this study for the DNS of a stratified turbulent wake. The top and bottom row
show grid used for the simulations at Re ¼ 5� 103 and Re ¼ 105, respectively. The left column shows the full extent of the computational domain for each
Re. The black solid lines delineate subdomain interfaces with the local GLL grid omitted for clarity. The right column shows an exploded view of the wake
core region for each Re with the local GLL grid included. The Re ¼ 5� 103 run employs M ¼ 7 subdomains of order of approximation N ¼ 24, with
subdomain origins located at z=D ¼ �6;�3:17;�1:67;�0:5;0:5;1:67 and 3:17. The Re ¼ 105 run employs M ¼ 13 subdomains of order of approximation
N ¼ 40, with subdomain origins located at z=D ¼ �6;�3:67;�2:33;�1:33;�0:8;�0:4;�0:13;0:13;0:4;0:8;1:33;2:33 and 3:67.
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Following a brief overview of the numerical method, stabilizers employed therein and the specific simulations consid-
ered, the numerical eddy viscosity analysis is elaborated upon in Section 5. Results are then presented in Section 6. Conclu-
sions and possible extensions of this work, including directions for a more rigorous analysis, are given in Section 7.

2. Numerical method

In this study, the three-dimensional incompressible Navier–Stokes equations (1) and (2) are recast in skew-symmetric
form [7]:
ou
ot
¼ �1

2
½u � ruþrðu � uÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NðuÞ

� 1
q0
rpþ m r2u|ffl{zffl}

LðuÞ

; ð3Þ

r � u ¼ 0: ð4Þ
Periodic boundary conditions are used in both horizontal directions. In the vertical direction, non-slip and free-slip
boundary conditions are employed at the bottom and top of the computational domain, respectively.

The temporal discretization of (3) and (4) consists of three fractional steps [8]: the explicit treatment of the non-linear
terms, the implicit solution of a Poisson equation for the pseudo-pressure, which ensures an incompressible velocity field,
and the implicit solution of a Helmholtz equation for the viscous terms, where the physical boundary conditions are im-
posed. This splitting approach combines third-order stiffly stable and backward-differentiation schemes with a dynamic
high-order boundary condition for the pressure. Thus, OðDt2Þ accuracy is ensured for both velocity and pressure [22] and
the maximum possible value of stable timestep is attainable [30].

In the periodic horizontal directions, Fourier spectral discretization is used with Nx and Ny Fourier modes in the longitu-
dinal and spanwise direction, respectively. In the vertical direction, the computational domain is partitioned into M subdo-
mains of variable height Hk ðk ¼ 1; . . . MÞ and fixed order of polynomial approximation N (Fig. 1). The total number of vertical
grid points is Nz ¼ MðN þ 1Þ þ 1. Within each subdomain, a spectral collocation scheme based on Legendre polynomials [7] is
used. Subdomains communicate with their neighbors via a simple patching condition [8]. The multidomain scheme allows
for increased vertical resolution in the turbulent core of the wake while also resolving adequately, yet not excessively, the
internal wave-dominated ambient.

The resolutions used in this paper aim to capture the dynamically relevant scales of motion in the wake while accomo-
dating available computational resources and the need for rapid run turnaround. As a result, the DNS become under-resolved
at higher Reynolds numbers and the effect of molecular viscosity is felt only weakly by the resolved scales. When spectral
schemes, which are inherently non-dissipative, are used in under-resolved simulations, the resulting Gibbs oscillations are
compounded by aliasing effects driven by the non-linear term, leading to catastrophic numerical instabilities [19]. In the
present model, two techniques are used to ensure stability of the numerical solution while preserving spectral accuracy: ex-
plicit spectral filtering and penalty schemes.

3. Stabilization techniques

3.1. Penalty methods

Penalty methods consist of collocating a linear combination of the equation and boundary/patching conditions (the latter
multiplied by a penalty coefficient) at the boundaries/subdomain interfaces, respectively [25,24]. At the subdomain inter-
faces, patching conditions are treated as boundary conditions local to the specific subdomain [24]. The equation is satisfied
arbitrarily close to the boundary/subdomain interface, with near negligible error at these locations, thereby enabling the
stable computation of the high Re ‘‘internal” (internal with respect to the subdomain boundary) dynamics of the flow with-
out having to resolve the thin numerical/viscous physical boundary layers or sharp gradients at subdomain interfaces [8].
The weak enforcement of boundary/patching conditions renders the penalty method inherently discontinuous, i.e. any phys-
ical location on a subdomain interface has a separate grid point assigned to it on each contributing subdomain. The differ-
ence in solution values at each of these grid points is of the order of the discretization scheme [24].

In terms of the splitting scheme summarized in Section 2, the penalty method is applied at two different levels in the
incompressible Navier–Stokes equations. The explicit non-linear term advancement is treated as a hyperbolic equation
whereas the implicit viscous term treatment as a parabolic equation (in this section all subsequent equations are written
as a function of the u-velocity without loss of generality):
ou
ot
¼ NðuÞ; ð5Þ

ou
ot
¼ mLðuÞ: ð6Þ
The temporal derivatives in Eqs. (5) and (6) are only approximations to their discrete counterparts appearing in the
respective fractional steps of the temporal discretization under consideration.
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The penalty formulation of Eq. (5), in physical space, for each subdomain of index-k and uniform order N is
ouk

ot
¼ NðukÞ � sk

1Q�k ðzk
i Þ½auk

0 � gk
1ðtÞ� � sk

2Qþk ðzk
i Þ½cuk

N � gk
2ðtÞ�; ð7Þ
where
Q�k ðzk
i Þ ¼ di0; Qþk ðzk

i Þ ¼ diN ð8Þ
here dij is the Kronecker delta function with subscript i corresponding to the collocation point zk
i . The values of the coeffi-

cients a, c, sk
1 and sk

2 are determined by treating each individual subdomain as a single domain whose interfaces support
patching conditions that act as open boundary conditions through which information is exchanged with adjacent subdo-
mains. The patching conditions are the terms in the brackets of Eq. (7) and are treated as localized open boundary conditions
where each subdomain experiences ‘‘inflow” or ‘‘outflow” depending on the value of the vertical interfacial velocities Wk

0 and
Wk

N at the previous timesteps, thereby setting the specific form of gk
1ðtÞ and gk

2ðtÞ (see also Refs. [25,24,8]). Note that, due to
the use of no-slip and free-slip boundary conditions at the bottom and top, respectively, of the computational domain, the
penalty operators in Eq. (5) are set to zero at the top and bottom boundaries.

The penalty formulation of (6) is significantly different from that of (5) due to its parabolic nature. In Fourier space, for an
individual horizontal wavenumber pair ðkx; kyÞ, the final equation is
�
d2

dz2 u� uþ F � sk
1Q�k ðzk

i Þ auk
0 � b�

ouk
0

ozk
� gk

1ðtÞ
� �

� sk
2Qþk ðzk

i Þ cuk
Nk
þ d�

ouk
N

ozk
� gk

2ðtÞ
� �

¼ 0: ð9Þ
The first three terms in the left-hand side of (9) originate from the discretization of (6) in Fourier space with F carrying
information from the previous fractional step, i.e. the treatment of the pressure. The small parameter � is defined in [8] and
scales as mDt. Q�k ðzk

i Þ and Qþk ðzk
i Þ are defined in (8). Again, the terms in the brackets represent appropriate patching or bound-

ary operators, defined in detail in Diamessis et al. [8]. The coefficients a, b, c and d are chosen to represent either the exter-
nally imposed boundary condition (Dirichlet, Neumann or Robin) or are set to unity at the subdomain interfaces where the
patching condition corresponds to a localized Robin boundary condition. The penalty coefficient values are then set
accordingly.

3.2. Spectral filters

Penalty schemes are designed to ensure numerical stability in the vicinity of subdomain interfaces and tend to be less
effective in the subdomain interiors. The initial objective of the turbulent wake simulations described in this paper was
to reproduce wakes observed in the laboratory at Re � 5� 103 (where Re is defined in Section 4.3 to be based on body diam-
eter and tow speed) [42] while balancing adequate resolution of the energy-containing scales of the flow and a run turn-
around of wall-clock time of no more than a day. To this end, a resolution of 128� 64� 119 on an MPI-parallelized code
was deemed sufficient (see also the relevant discussion in Section 4.3). At this resolution, numerical tests performed by
the authors using the spectral multidomain penalty scheme as the only stabilization technique, indicated that the increased
stability enabled by the scheme allowed an increase of the maximum attainable Re from 50 to 500. When the value of Re, and
thus, the degree of under-resolution, was increased beyond approximately 103, high-wavenumber numerical noise of
increasing amplitude, enhanced by the non-linearity of the Navier–Stokes equations through aliasing, emerged in the sub-
domain interiors and destabilized the simulations. To suppress this numerical noise, a low-pass spectral filter is applied to
the modal expansion of the numerical solution, whose spectral accuracy is thereby minimally impacted [33]. At the higher
Re ¼ 105 runs considered in this work, a judicious choice of resolution and filter strength is made to exploit the distinct
advantages of high accuracy and minimal artificial dissipation of the spectral multidomain penalty scheme towards resolv-
ing the physics of interest.

In this study, an exponential filter [19] is used
rðkÞ ¼ exp �a
k
kc

� �p� �
; ð10Þ
where p is the filter order, kc represents the index of the highest resolved mode, and a ¼ �lnðeMÞ with eM being the machine
precision. The filtered solution uF may now be expressed in modal form as
uFðzÞ ¼
XN

j¼0

rðkjÞ~ujPjðzÞ; ð11Þ
where kj is the index of the jth Legendre mode and ~uj and PjðzÞ the corresponding modal coefficients and Legendre polyno-
mials, respectively.

Note that Legendre filters have negligible influence at the subdomain interfaces [19,26], where the influence of the pen-
alty method is the strongest. Thus, the two stabilizing techniques complement each other in enabling numerical stability
through the entire extent of a spectral subdomain. Nonetheless, application of Legendre filtering modifies the corresponding
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modal coefficients and, therefore, violates the patching and boundary conditions [4]. However, unlike the spatially contin-
uous spectral element method [33,2], the inherently discontinuous multidomain penalty scheme is not concerned with pre-
serving the patching and boundary conditions [8]. The error induced by the filtering operation, associated with a small
increase in the discontinuity in the solution at the subdomain interface, is minimal and of the same order as the penalty
scheme [24]. Nonetheless, this enhancement of interfacial discontinuity by Legendre filtering does bear distinct implications
for the behavior of the associated numerical viscosity at the interfaces, as discussed in Section 6.

Expressions analogous to Eqs. (10) and (11) may be constructed for filtering in Fourier space [19]. Note however, that in
this study, in Legendre space, k in Eq. (10) represents the kth discrete Legendre mode. In contrast, in Fourier space, for the
purpose of implementing efficient two-dimensional filtering, k is elected to represent the magnitude of an individual Fourier
wavenumber pair ðkx; kyÞ, i.e. k ¼ ðk2

x þ k2
yÞ

1=2 and kc is chosen as kc � ½ðk2
x;max þ k2

y;maxÞ�
1=2, i.e. the maximum resolved Fourier

wavenumber pair magnitude (for the fields analyzed in this work kx;max ¼ ky;max). The specific choice of kc implies that only
the top and bottom righthand corners of the solution domain in Fourier space are subject to significant spectral filtering.

In the incompressible spectral multidomain solver presented in this paper, Legendre spectral filtering of the same order p
is applied after all three fractional steps in the time discretization summarized in Section 2. Fourier spectral filtering is ap-
plied only after advancing the non-linear terms to suppress the accumulation of high-wavenumber numerical driven by ali-
asing. The specific filters used in this paper are shown in Fig. 2.

4. Simulation description

4.1. Problem geometry

The flow field analyzed in this study is the turbulent wake with non-zero net momentum examined in detail by Diamessis
et al. [8,10,11]. Such a flow corresponds to the mid-to-late time wake of a sphere of diameter D towed with a velocity U in a
fluid of homogeneous density. Note that the spatial discretization does not account for the sphere and focuses only on the
flow generated in its wake. The computational domain of dimensions Lx � Ly � Lz is shown in Fig. 3 and corresponds to a win-
dow fixed in space with respect to the moving sphere, as do the laboratory measurements [42]. Behind the sphere, the wake
is considered to be statistically stationary. The periodicity assumption in the x-direction is valid because the length of the
computational domain is much smaller than the total wake length [15]. The spanwise periodicity assumption is also valid
provided the horizontal lengthscale of the wake does not become excessively large. The axisymmetric turbulent wake shown
schematically in Fig. 3 is a classical example of a free shear flow where turbulence is embedded in a spatially localized mean
flow structure. Such a flow configuration provides a convenient framework for the analysis discussed in Section 5. In Fig. 4
we show cross-sections, in the Oxz plane cutting through the wake centerline, of typical vorticity fields from actual simula-
tions at two different Reynolds numbers.

4.2. Initial condition generation

Although the sphere is not accounted for in the computation, its effect must be incorporated in the initial condition. De-
tails of the design of the initial condition and initialization process are given elsewhere [8,11]. The initial flow field is the
superposition of an axisymmetric Gaussian mean velocity profile and a turbulent fluctuation field:
uðx; y; z; tÞ ¼ UXðy; z; tÞ þ u0ðx; y; z; tÞ: ð12Þ



Fig. 3. Computational domain for the simulation of a mid-to-late time turbulent wake with non-zero net momentum. The wake was originally generated by
a sphere of diameter D, towed with a velocity U, which however is not present in the computational domain. The domain dimensions are Lx � Ly � Lz .
Consistent with the laboratory water tank the domain has a solid wall bottom and free-slip top. Shown are also the horizontal and vertical centerplane of
the flow, the intersection of which determines the wake centerline.
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The X subscript indicates averaging in the streamwise direction. Analytical expressions for UXðy; z; tÞ and u0ðx; y; z; tÞ may
be found in Diamessis et al. [11]. This initial flow field is constructed to represent a self-similar axisymmetric wake at a dis-
tance x=D ¼ 2 from the sphere [45,35]. The x-averaged r.m.s. (root mean square) distribution of the fluctuating velocity is
assumed to be equipartitioned among its three components. Although laboratory studies on towed sphere wakes [1] indicate
self-similarity is first established at x=D ¼ 6, the focus of the simulations at hand is to characterize the dynamics of mid-to-
late time wake, which should evolve independently of any assumptions about the near-wake flow field, especially given the
extensive efforts in designing a robust initial condition [11].

The initial velocity fields of all simulations considered here are the same regardless of Re value. The three-dimensional
fluctuating velocity field is constructed as spectrally random noise in three-dimensional Fourier space with a k�5=3 energy
spectrum. This random field is inverse Fourier transformed and then windowed onto the envelope of the r.m.s. profile of
the turbulent fluctuations. Initially, the fluctuating and mean velocity fields are uncorrelated. Thus, a preliminary ‘‘relaxa-
tion” simulation [15] is run to generate a physically realistic velocity field. During relaxation, the flow is forced to maintain
fixed the initially prescribed mean and r.m.s. fluctuating velocity profiles, while the spatial distribution of the turbulent fluc-
tuations, and thus the Reynolds stresses, is allowed to vary. Relaxation is terminated when turbulent production and dissi-
pation reach a steady state.

4.3. Numerical simulations

The purpose of this study is to provide a basic perspective on the effective numerical viscosity embedded in spectral mul-
tidomain penalty method models of incompressible flow. Thus, this paper considers only two of the turbulent wake simu-
lations performed in [11], specifically those corresponding to an unstratified fluid at two different values of Re,
Re ¼ UD=m ¼ 5� 103 and 105. U and D are the tow velocity and diameter of the virtual sphere which would produce a tur-
bulent wake whose mean and fluctuating velocity profiles at x=D ¼ 2 are used as an initial condition for the simulations
examined here. It is emphasized that the Reynolds number is varied by changing the value of m, i.e. the Re ¼ 105 run uses
a molecular viscosity twenty times weaker than that employed at Re ¼ 5� 103.

The computational domain has a horizontal dimension of Lx � Ly ¼ 26 2
3 D� 13 1

3 D and corresponds to a virtual stratified
water tank of height Lz ¼ 12D. A uniform spatial grid is used in the horizontal direction whereas in the vertical the spectral
multidomain discretization of Fig. 1 is employed. M ¼ 7 and 13 non-uniform height subdomains of order of approximation
N ¼ 24 and N ¼ 40 are used in the vertical direction at Re ¼ UD=m ¼ 5� 103 and 105, respectively. The positioning of the sub-
domains is dictated by the requirement of adequate resolution of the energetic scales of the turbulence in the active regions
of the flow, which are known a priori. Increased resolution is available at the energetic core of the wake whereas less is uti-
lized in the less active ambient.

The resolution at Re ¼ 5� 103 and 105 is 256� 128� 175 and 512� 256� 531 mesh points, respectively. Fourier
and Legendre spectral filters of orders ðpF; pLÞ ¼ ð20;8Þ and (10,6) are used in the low and high Re runs, respectively. Another
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simulation for Re ¼ 5� 103 was performed with resolution 128� 64� 119 (corresponding to M ¼ 7 subdomains of N ¼ 16)
and filter orders ðpF; pLÞ ¼ ð12;6Þ. Computed one-dimensional Fourier spectra and timeseries of wake lengthscales and veloc-
ities exhibited negligible differences with their higher resolution counterparts [11]. In the lower Re case, we have elected to
focus our analysis on the higher resolution simulations which capture the physics of the wake core in greater detail without,
however, generating any concern about slow run turnaround time. In the higher Re case, resolution is further increased to
adequately capture the now even finer energetic scales of motion but also to ensure numerical stability. It is the highest res-
olution permitted by the available computational resources. At both Re ¼ 5� 103 and 105, the values of ðpF; pLÞ are chosen to
enable a numerically stable solution over long-time integrations, without excessively smoothing out any of the physically
significant finer-scale features of the flow fields. Given that, despite the increase in resolution, the Re ¼ 105 case exhibits
a higher degree of under-resolution with respect to its low Re counterpart, a reduction in filter orders is necessary to main-
tain numerical stability. Finally, the computational timestep Dt is chosen as such that the CFL stability criterion be obeyed in
all three spatial directions for a third-order stiffly stable scheme [8].

One-dimensional spectra of turbulent kinetic energy, obtained at the horizontal wake centerplane and averaged over the
width of the wake, exhibited no signs of artificial energy accumulation over the range of scales directly affected by the filter.
The same features were observed in corresponding two-dimensional spectra (Fig. 5). Similar observations were made for
one-dimensional Legendre spectra obtained in the wake core. Thus, the resolutions and filter orders used at each Re are
clearly adequate in terms of suppressing Gibbs-oscillations compounded by aliasing at the highest modes of the numerical
solution.

All simulations performed employ a MPI-based parallel solver which scales linearly up to 512 processors on a distributed
memory cluster [11]. The assignment of different sections of the computational domain to individual processors is based on a
one-dimensional domain decomposition which partitions the domain in distinct vertical slabs of thickness Lx=NP ðLy=NPÞ
when operating in physical (Fourier) space, where NP is the number of processors. Three-dimensional velocity fields are out-
putted at prescribed times. A separate postprocessing code is then used to perform the analysis discussed in Section 5. The
Re ¼ 5� 103 runs use NP ¼ 32 processors, whereas their Re ¼ 105 counterparts require NP ¼ 256. All simulations and post-
processing were performed at the University of Southern California High Performance Computing Center’s Linux cluster. On
this machine, the average wall-clock time required for a computational timestep is 5 s and 14 s for the low and high Re val-
ues, respectively. Note that the respective durations of the ‘‘relaxation” runs in wall-clock time were 15 h and 9 days. Given
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our available computational resources, any additional runs at the higher Re limit where number of subdomains, subdomain
order of approximation and filter order could be varied would be prohibitively costly.

4.4. Choice of initial condition specific to numerical viscosity analysis

The flows that will be analyzed represent a localized turbulent event under the effect of a background shear flow. It is
desired that the flow fields are associated with the most energetic stage of flow evolution, i.e. the near wake. At this point
in flow evolution, the degree of under-resolution is at its maximum, as the scale separation in the turbulent wake, i.e. the
separation between the peak in the kinetic energy spectrum and the high-wavenumber motions directly impacted by molec-
ular viscosity (a means of suppressing aliasing-induced effects), is at its largest. As a result and as dictated by experience, the
capacity of the spectral filters and penalty schemes to maintain numerical stability is challenged the most at this time. Thus,
the near-wake flow fields represent ‘‘the worst case scenario” and are the most suitable for evaluating the effective numer-
ical viscosity.

In the same vein, it should also be noted that the propensity for numerical instability in a non-stabilized simulation was
found to not depend significantly on the energy content of the higher wavenumber range. Thus, the similarity between the
initial two-dimensional spectra in Fig. 5, which suggests the absence of an inertial range in the high Re simulations, should
not be a cause for concern. The initial one-dimensional streamwise spectra at both Re also display the similarity observed in
Fig. 5. As discussed in Diamessis et al. [8] (see their Fig. 3 and relevant discussion), the similarity between initial spectra
across different Re is an artefact of relaxation and does not persist for more than a fraction of an eddy turnover time. Beyond
this point, visible differences are rapidly observed across the Re ¼ 105 and Re ¼ 5� 103 cases. At a time which corresponds to
approximately one eddy turnover time after the termination of relaxation, Re ¼ 105 spectra are found to exhibit a near-dec-
ade wide inertial range whereas the equivalent Re ¼ 5� 103 spectra show a much sharper drop-off (not shown here). In
summary, the propensity for numerical instability is proportional to the energy content and scale separation in the physical
incarnation of the turbulent wake. The reduced energy content of the higher resolved wavenumber in the numerical approx-
imation of the near-wake is rapidly replenished after the relaxation process is ‘‘turned-off”.

Beyond being a reliable surrogate of the near-wake, the initial condition for the analyzed datasets is chosen to be imme-
diately after (or nearly so) after the termination of relaxation for two additional reasons: on one hand, this is the initial con-
dition used in stratified wake simulations by the first and third author [10,11] and by others (who employed on low-order
finite difference schemes) [15]. An assessment of the effective eddy viscosity in the spectral multidomain penalty scheme
would enable an even more rigorous comparison of the former and latter sets of simulations. On the other hand, both Re
considered here have initial conditions with a comparable spectral signature which allows a clearer assessment of the role
of Re (and associated choices of resolution and filter orders) on the generated numerical viscosity. Spectra computed at sub-
sequent times in wake evolution do not only exhibit a visible difference at intermediate-to-high wavenumbers across Re
(due to the emergence of an inertial range at Re ¼ 105) but also are non-negligibly different at the lower wavenumbers,
behavior which would further complicate the analysis and is outside the scope of this paper.

The only concern about the ‘‘relaxation” procedure is that it is associated with an artificial input of energy into the flow
field by keeping the mean and fluctuating velocity profiles fixed in time. Such artificial energy input could spuriously bias
any estimates of energy dissipation required to compute the necessary effective numerical viscosities. Thus, a new initial
condition, specifically for the needs of this study, is generated simply by advancing the final state at the end of the ‘‘relax-
ation” by several timesteps, during which the mean and fluctuating profiles are no longer held fixed and may evolve freely.
This modified initial condition is the one used for the simulations described in this paper. Specifically, a number of



Table 1
Summary of acronyms of all simulations analyzed in this paper

Run name Fourier filter Legendre filter Penalty method

Total Yes Yes Yes
Fourier Yes No No
Legendre No Yes No
Penalty No No Yes

The acronym of each run indicates what stabilization techniques are used by the numerical method. In the manuscript, the case indicated as ‘‘Total” in this
table, is also referred to as ‘‘fully dissipative”. As indicated in Section 5, an additional run used as the non-dissipative baseline is also analyzed, which
employs only a pL ¼ 20 and pL ¼ 10 filter in Legendre space for Re ¼ 5� 103 and 105, respectively.
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simulations are performed at both Reynolds numbers, during which all or only one of the stabilizing techniques described in
Section 3 are implemented to better identify the individual contribution of each stabilization method to the effective numer-
ical viscosity of the spectral multidomain penalty scheme. The acronyms used for all simulations are listed in Table 1. In
addition to the four runs listed in the table, a nominally non-dissipative baseline case is also considered, which is discussed
in more detail in Section 5.

5. Numerical dissipation and effective numerical viscosities

The essence of the method to extract information about implicit numerical dissipation for a particular numerical code is a
comparison between the kinetic energy decay rate given by the code in question and the decay rate computed with expres-
sions that minimize or entirely remove effects of the numerical dissipation, symbolically
en ¼
oE
ot

� �nondiss

� oE
ot

� �diss

: ð13Þ
In application to homogeneous turbulence Domaradzki et al. [13,14] calculated the first term in (13) using pseudo-spec-
tral evaluation of non-linear and viscous terms in the Navier–Stokes equation. The numerical dissipation is then simply a
residual of the energy decay rate computed from the dissipative code (the second term) and the combined spectral energy
transfer and viscous dissipation terms computed using pseudo-spectral method without numerical dissipation errors.

For inhomogeneous flows a computation of the non-linear and viscous term without numerical dissipation is not that
straightforward and a different, and more general, approach is used. The first term in (13) is computed exactly the same
way as the second term but using modification of the same code, or entirely different code, that removes or significantly
minimizes effects of the numerical dissipation. The same initial condition as for the second term and the same mesh must
be employed but the timestep can be decreased to minimize time stepping errors. The primary requirement for such a nom-
inally non-dissipative code, in a sense of minimized numerical dissipation, is that it should conserve the total kinetic energy
when run in the inviscid mode. Since the energy decay rate can be estimated from data from just two timesteps, such a nom-
inally non-dissipative code will never be run for more than just few timesteps for the purposes of our analysis. Therefore, it
does not need to be stable in the long time runs as long as it allows to compute the energy decay rate for a velocity field at a
given time without numerical dissipation effects. One can thus visualize the procedure where the actual code is run, produc-
ing velocity fields contaminated by the numerical dissipation, and whenever the value of the numerical dissipation is sought,
an auxiliary short time simulation is performed with the nominally non-dissipative code.

In the case considered here, numerical dissipation originates from the Legendre spatial discretization, fully implicit time
discretization for the viscous term and, most dominantly, the application of stabilizing filters and the penalty method. Note
that the artificial dissipation of Legendre/Chebyshev schemes decreases exponentially with increasing N, whereas Fourier
discretizations are free of any artificial dissipation (see Section 1 and Ref. [5]). In terms of temporal discretization, through
repeated numerical experiments, we have found that the numerical dissipation induced by the combination of a fully impli-
cit scheme with third-order backward differentiation exceeds negligibly that associated with a Crank–Nicholson scheme for
the viscous term. We are thus led to conclude that the spectral filters and the penalty method are the main contributors to
numerical dissipation.

The natural choice of a nominally non-dissipative case would be a simulation where no stabilizer is turned-on. As dis-
cussed above, such a baseline non-dissipative code should also conserve the total kinetic energy when run in the inviscid
mode. In the under-resolved triply-periodic simulations which use Fourier discretization in all three directions, such a sim-
ulation is feasible because, in the absence of explicit external forcing, there is no mechanism to inject additional energy into
the flow field. However, non-linearity-induced aliasing rapidly intensifies the Gibbs oscillations that develop at the bound-
aries and subdomain interfaces of non-stabilized under-resolved spectral multidomain simulations (see also Section 2) and
produces an increase in the total kinetic energy of the flow. Thus, for the purpose of damping these spurious oscillations, the
baseline case in this study consists of a simulation where all stabilizers are turned off except for pL ¼ 20 and pL ¼ 10 Legen-
dre filters for Re ¼ 5� 103 and Re ¼ 105, respectively. These values of pL are markedly larger than the corresponding ones
used in the fully stabilized simulations and simply serve to produce a simulation that is stable over the time interval that
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our effective numerical viscosity analysis is applied. At both Re, the nominally non-dissipative case can be run for several
timesteps (of O(100)) before becoming unstable (this is of course the reason why in actual, long-time, simulations stronger
filters must be used to control numerical instabilities). As discussed above, such short run times are more than sufficient
because an auxiliary simulation results are needed only to provide the ‘‘non-dissipative” time derivative in Eq. (13) and that
can be computed numerically from the fields at only few contiguous timesteps.

For both Re, all simulations required for the analysis of the numerical viscosity were run for eight timesteps with a con-
stant value of Dt set by the associated CFL restrictions. Note that numerical tests showed that running with one-half and one-
quarter the timestep did not produce a significantly different time stepping error.

Fig. 6a and b shows the decay of the total kinetic energy obtained using the baseline code that minimizes numerical dis-
sipation, i.e., the code that uses only pL ¼ 20 and pL ¼ 10 Legendre filters for Re ¼ 5� 103 and Re ¼ 105, respectively. In each
case shown in Fig. 6a and b the simulations were run for eight timesteps with different values of the molecular viscosity. In
particular, in Fig. 6a the kinetic energy decay is shown for the molecular viscosity m ¼ m0 used in the actual simulations as
well as for two more values corresponding to a variation of the above viscosity value by a factor of 10 and 0.1. The baseline
cases for m ¼ m0 for both Re are used to calculate the non-dissipative term in Eq. (13). The cases with m ¼ 0:1m0 approximate
the vanishing viscosity limit in which the kinetic energy of a flow should be globally conserved. Indeed, for these cases and
for the time intervals considered, it is seen in Fig. 6a that the kinetic energy remains practically constant, satisfying the
requirement that the baseline code minimizes the numerical dissipation.

The approach of varying the molecular viscosity in a baseline code with minimized numerical dissipation is also useful in
estimating the global numerical viscosity acting over short time intervals in the actual simulations. In Fig. 6b we plot the
total energy decay obtained using the full numerical code with all stabilizers turned on (solid lines) and the energy decay
obtained using the baseline simulation for different values of the molecular viscosity m (symbols). The baseline case for
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m � 1:25m0, where m0 is the molecular viscosity in the actual simulations, provides the best match to the actual energy decay
for the case Re ¼ 5� 103. At Re ¼ 105 the best match is observed for m � 2:5m0. Therefore, to get the same energy decay, sim-
ulations with stabilizers absent (or minimized) require a molecular viscosity that is larger by 25–150% than the value em-
ployed in simulations that use stabilizers. This indicates that, depending on Re, the numerical dissipation effects can be as
significant as the dissipation effects due to the physical viscosity m0.

For a simulation at a given Re, the ratio m=m0 should clearly decrease towards unity as the simulation becomes increasing
well-resolved (a mounting challenge as Re is increased) as a broader range of scales would be captured thereby allowing
molecular viscosity to have a stronger direct influence over the resolved scales. An increase n in filter order would then
be possible, whereas the penalty terms will automatically diminish their contribution automatically as a function of subdo-
main thickness or order of polynomial approximation N [24]. Thus, a decrease in global numerical viscosity, as quantified by
the approach outlined above, would be expected. Now, if resolution is kept fixed and Re is increased, the penalty terms will
strengthen their contribution but, most importantly, a reduction in filter order would be needed for a robust long-time com-
putation. The result would be an increase in global numerical viscosity. Further support towards these conjectures regarding
the dependence of numerical viscosity on resolution and Re is provided by the model discussed in Section 6.

The global numerical viscosity effects estimated above do not provide information about scale dependence of numerical
effects. The scale dependence can be obtained by considering the wave number dependent eddy viscosity, defined for a triply
periodic domains in [13,14]. For a flow between two horizontal planes with linear dimensions Lx and Ly in periodic directions
x and y, respectively, and a non-periodic z-direction we adopt the following approach.

The kinetic energy balance for various wall-bounded flows is well documented in the classical textbooks on turbulence
[36,46,28]. Fourier decomposition of the velocity field in horizontal directions provides information about contributions that
various lateral scales of motion, associated with different horizontal wavenumbers, make to the dynamics of the flow. In
what follows we will consider a mixed Fourier-physical space representation for any dependent variable qðx; tÞ
ð¼ p;u; v;wÞ. If values of q are provided on Fourier collocation points xm ¼ mLx=Nx, yn ¼ nLy=Ny, where m ¼ 0;1; . . . ;Nx and
n ¼ 0;1; . . . ;Ny, then a discrete inverse Fourier transform with respect to x and y is
F½q�ðkx; ky; z; tÞ ¼
1

NxNy

XNx�1

m¼0

XNy�1

n¼0

qðxm; yn; z; tÞe�ikxxm e�ikyyn ; ð14Þ
where kx ¼ 2pj=Lx and ky ¼ 2pl=Ly with j and l satisfying conditions �Nx=2 6 j 6 Nx=2� 1 and �Ny=2 6 l 6 Ny=2� 1,
respectively.

In this representation the Navier–Stokes equation (1) is written as
o

ot
unðk; z; tÞ ¼ Nnðk; z; tÞ þ m

o2

oz2 � jkj
2

 !
unðk; z; tÞ þ Fnðk; z; tÞ; ð15Þ
where the index notation is employed, k ¼ ðkx; kyÞ, jkj2¼: k2 ¼ k2
x þ k2

y , and Nn incorporates all non-linear terms, i.e. it is the
sum of the advective and the pressure terms. Also, in what follows we use the same notation for a Fourier transform as
for the transformed function if this does not lead to confusion. In numerical simulations performed in the geometry consid-
ered here the value of a physical quantity qðk; zÞ for k ¼ 0 is equal to a plane averaged mean �qðzÞ (Eq. (14)) in the physical
space while all modes k 6¼ 0 constitute fluctuations q0 about this mean. For this reason the zero mode can be identified with
the mean while all non-zero modes can be identified with turbulence.

One easily obtains the equation for the energy amplitude of the mode k
Eðk; zÞ ¼ 1
2

unðk; zÞu	nðk; zÞ; ð16Þ
using (15)
o

ot
Eðk; zÞ ¼ Re½u	nðk; zÞFnðk; zÞ� þRe½u	nðk; zÞNnðk; zÞ� þ m

o2

oz2 Eðk; zÞ � 2mjkj2Eðk; zÞ � m
o

oz
unðk; zÞ

� �
o

oz
u	nðk; zÞ

� �
; ð17Þ
where the asterisk signifies complex conjugate and the summation convention is assumed. Here and in subsequent formulas
explicit time dependence is omitted. Terms on the right-hand side of Eq. (17), in the order of occurrence, describe the fol-
lowing physical processes: energy production, energy redistribution by non-linear interactions, redistribution by viscous
stresses, dissipation caused by the horizontal gradients of the velocity field, and dissipation attributable to the vertical
gradients.

All terms in (17) are scalars which depend on z and have a lateral scale dependence through a two-dimensional wave-
number ðkx; kyÞ. It is more convenient to work with a single scale-dependent parameter. For turbulence statistically homo-
geneous and isotropic in the horizontal planes a natural scale-dependent parameter is a wavenumber length
jkj ¼ ðk2

x þ k2
yÞ

1=2. For any quantity qðkx; ky; zÞ the dependence on this variable is introduced by summing all modes in circular
shells with a prescribed thickness Dk centered at jkj:
qðk; zÞ ¼
X

jkj�1
2Dk6jkj<jkjþ1

2Dk

qðk; zÞ: ð18Þ
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While our fields are not isotropic in horizontal planes, we still will use shell averaging as the simplest mechanism for
obtaining scale dependent quantities. For instance, the energy spectra obtained from the numerical simulations at the hor-
izontal centerplane of the flow as a function of horizontal wavenumber k are shown in Fig. 5.

Consider now a numerical simulation performed with a full Navier–Stokes solver and a timestep Dt. For a velocity field
uiðx; tÞ, obtained in the simulation at time t, the energy spectrum Eðk; z; tÞ can be computed using discrete Fourier transforms
and Eqs. (16) and (18). The energy decay rate is computed from such data using backward finite differences
o

ot
Eðk; z; tÞ � c0Eðk; z; t þ DtÞ �

P2
i¼0aiEðk; z; t � iDtÞ

Dt
ð19Þ
and for sufficiently small timestep is an accurate approximation to the decay rate defined by Eq. (17). The coefficients c0 and
ai (i = 0, 1, 2) for third backward differentiation may be found in Karniadakis et al. [30]. The difference between decay rates
computed using velocity fields from the actual solver and the baseline ‘pseudo-inviscid’ solver provides a k-dependent
numerical dissipation
enðk; zÞ ¼
oEðk; zÞ

ot

� �nondiss

� oEðk; zÞ
ot

� �diss

; ð20Þ
where the first and second terms on the right-hand side represent, respectively the energy decay rate for the baseline case
and the specific case under consideration, with all or one of the stabilizers turned on (see Table 1).

In the theory of homogeneous, isotropic turbulence, a wavenumber dependent subgrid scale dissipation can be used to
define a wavenumber-dependent eddy viscosity, as was first proposed by Kraichnan [31]. The definition
mSGSðkÞ ¼
eSGSðkÞ

2k2EðkÞ
; ð21Þ
where EðkÞ is the three-dimensional energy spectrum and eSGSðkÞ is the energy loss at scale k due to subgrid scale interac-
tions, is based on the analogy with the exact expression for the viscous dissipation
emðkÞ ¼ 2mk2EðkÞ: ð22Þ
The same analogy has been used in defining a numerical viscosity acting in numerical simulations of isotropic turbulence
performed with a finite volume code [48,14]
mnðkÞ ¼
enðkÞ

2k2EðkÞ
: ð23Þ
We will use the same formal definition in the current analysis of simulations with one inhomogeneous direction, i.e., we
define the k-dependent numerical viscosity for each z-plane as
mnðk; zÞ ¼
enðk; zÞ

2k2Eðk; zÞ
: ð24Þ
It must be noted, however, that while the definition (23) is unique for isotropic turbulence, forms other than (24) can be
considered for inhomogeneous turbulence. Indeed, in the energy Eq. (17) the total viscous dissipation in a plane z is repre-
sented by the last two terms on the r.h.s. Therefore, one could also require that the numerical dissipation enðk; zÞ be expressed
in the form of the last term, proportional to the vertical velocity gradients, or some combination of both terms, e.g.
mnðk; zÞ ¼
enðk; zÞ

2k2Eðk; zÞ þ o
oz uðk; zÞ
�� ��2 ; ð25Þ
where o
oz uðk; zÞ
�� ��2 is o

oz unðk; zÞ
� 	

o
oz u	nðk; zÞ
� 	

summed over shells according to the definition (18). The choice of (24) simply
makes comparisons with previous results for isotropic turbulence easier. It must be stressed, however, that irrespective
of the choice, the total numerical dissipation is accounted for because the numerical viscosity (24) is calculated from
enðk; zÞ, Eq. (20). Eq. (24) merely expresses the total numerical dissipation entirely in terms of the horizontal velocity gradi-
ents in z-plane (the term k2Eðk; zÞ), with mnðk; zÞ as the proportionality factor. For completeness, some results for the numer-
ical viscosity computed using both definitions (24) and (25) will be compared.

For the runs listed in Table 1, five choices for the spectrum Eðk; zÞ used in the normalization of the numerical dissipation in
Eqs. (24) and (25) are possible: the spectrum obtained in the specific run under consideration (fully dissipative, Fourier,
Legendre or Penalty cases) or the equivalent spectrum for the baseline case. In the analysis that follows, we elect to normal-
ize with Eðk; zÞ obtained from the baseline case, as this case provides a common platform for comparison of the numerical
dissipation rate as computed for all simulations employing at least one form of stabilizer. This approach is further motivated
by the assumption that at each timestep, within the short duration of all runs considered here, the spectra Eðk; zÞ for baseline
and fully dissipative cases are not appreciably different. It is only the energy decay rate as a function of wavenumber which
exhibits significant differences across runs. Furthermore, it should be emphasized that we are primarily interested in



8158 P.J. Diamessis et al. / Journal of Computational Physics 227 (2008) 8145–8164
quantifying the numerical dissipation due to different stabilization techniques. Normalization with 2k2Eðk; zÞ simply enables
an efficient comparison of numerical dissipation with the dissipation driven by molecular effects.

6. Results

Results on the effective numerical viscosity of the spectral multidomain penalty scheme are now presented. All results
shown here are computed at the fifth timestep of the simulation under consideration. No significant differences were ob-
served at prior or subsequent timesteps. Given that we focus on quantifying the effective numerical viscosity during the
most energetic time of flow evolution, our analysis will concentrate on the most energetic spatial region of the flow, i.e.
the wake core, and particularly at the center and interfaces of the central subdomain (see Fig. 4).

Fig. 7 shows the numerical eddy viscosity mn computed according to Eq. (24) (Fig. 7a) and (25) (Fig. 7b) on the horizontal
centerplane (at z ¼ Lz=2), i.e., the center of the middle subdomain (see Fig. 4). Computation of mn using Eq. (24) or Eq. (25)
does not reveal any significant differences over the entire range of resolved wavenumbers. The total numerical viscosity pro-
duced when all stabilizers are turned on is dominated by Legendre filtering at large and intermediate scales and Fourier fil-
tering at small scales. Application of only the Fourier filter is accompanied by numerical viscosity that is negligible at small
wavenumbers and becomes significant at k=kc P 0:85 and 0.45 for Re ¼ 5� 103 and 105, respectively, where the value of
mn=m begins to visibly exceed unity. Although the maximum value of mn=m for the strict application of the Legendre filter
is weaker than its Fourier counterpart, the Legendre filter induces a numerical viscosity that is non-negligible over the entire
range of wavenumbers. Its peak value is observed at the highest wavenumbers for both Re. For Re ¼ 5� 103, the normalized
Legendre-filter-induced numerical viscosity generally does not exceed unity for k=kc < 0:85. If the effective Reynolds number
of a simulation is determined using a cumulative effect of the molecular and the numerical viscosity, the Legendre filter does
not significantly impact the effective Reynolds number in this case. In contrast, the corresponding normalized viscosity for
Re ¼ 105 remains consistently above a value of one suggesting at least a two-fold reduction of the effective Reynolds number.
At the horizontal centerplane, which is also the element centerplane, the penalty method has a negligible effect over all
scales because it is designed to ensure stability only in the vicinity of the subdomain interfaces.

The sensitivity to the choice of Eðk; zÞ in the denominator of Eq. (24) is examined in Fig. 7c. For the eight-timestep dura-
tion of the Re ¼ 5� 103 runs, the mn=m curves are nearly identical across all wavenumbers for a normalization with Eðk; zÞ
from either the baseline or the fully dissipative case. However, at higher wavenumbers, i.e. k=kc > 0:6, the mn=m curves at
Re ¼ 105, for the fully dissipative and Fourier-only cases, exhibit a difference of two orders of magnitude for normalization
with Eðk; zÞ chosen from either the baseline or the fully dissipative case. In the latter case, a cusp-like maximum is now
clearly visible at the largest wavenumber. This sensitivity at high wavenumbers of the higher Re simulations may be attrib-
uted to their higher degree of under-resolution (see also the discussion in Section 4.3), which allows the faster contamination
of the higher horizontal Fourier wavenumbers with numerical noise originally generated in the vertical direction. Nonethe-
less, the physical implications of these very large values of numerical viscosity at high values of k=kc are secondary. The
behavior of this range of wavenumbers, whose primary purpose is to ensure numerical stability, is controlled by the spectral
filter. The associated energy content is negligible (below machine precision, see Fig. 5) and, therefore, the large values of the
numerical viscosity do not impact directly the energy-containing scales. Furthermore, as evidenced by the insert in the right
column of Fig. 7c, for k=kc < 0:4 (the range of wavenumbers not directly influenced by the filter), the choice of normalization
spectrum has no impact on the value of numerical viscosity.

By appealing to a simplified model ‘simulation’, the large variation in magnitude of the numerical viscosity at high wave-
numbers for the two values of Re may be shown to be primarily due to the application of the Fourier filter. Such a simulation
considers an initial velocity field whose energy spectrum on a prescribed horizontal plane at a prescribed vertical location is
given by E0 ¼ Eðk; t ¼ 0Þ. The simulation is advanced through the successive application of a Fourier filter of order pF in both
horizontal directions at each timestep. This approach is essentially equivalent to running a three-dimensional simulation of
evolution equations for all three velocity components whose right-hand side consists only of pFth order hyperviscous oper-
ators in the x- and y-directions [4,19]. Successive application of this filter to the initial condition yields, after n timesteps, the
energy spectrum:
EðnDtÞ ¼ E0 exp �2na
k
kc

� �pF
� �

: ð26Þ
Differentiating this equation with respect to time, where t ¼ nDt leads to an energy decay rate:
oE
ot

� �diss

¼ E0

Dt
�2a

k
kc

� �pF
� �

exp �2na
k
kc

� �pF
� �

: ð27Þ
Note that, in the context of this specific idealized simulation, where Navier–Stokes dynamics are ‘‘turned-off”, the equiv-
alent non-dissipative baseline case is assumed to produce ½oE=ot�nondiss ¼ 0.

Eq. (27) suggests that the energy decay rate due to the Fourier filter is determined by filter order pF and timestep Dt. The
�2aðk=kcÞpF term exhibits a maximum at the largest wavenumber. The multiplication of this term by the pF-order exponen-
tial function in Eq. (27) results in a distinct peak whose location will shift to the left with decreasing pF. Thus, for a given
resolution, the numerical dissipation rate will peak at progressively smaller wavenumbers when filter order is reduced, as
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Fig. 7. Effective numerical viscosity (normalized by the molecular viscosity) at the horizontal centerplane of the flow. (a) Eq. (24), normalized with baseline
case spectra; (b) Eq. (25), normalized with baseline case spectra. (c) Eq. (24), normalized with fully dissipative case spectra. The horizontal lines indicate
values mn=m ¼ 1. The insert zooms into region k=kc < 0:4. Note the difference in two orders of magnitude in the vertical axis of the right column in (c)
compared to (a) and (b).
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the filter function impacts an increasingly broader band of higher modes (Fig. 2). Increasing resolution is effectively equal to
increasing kc , which would have the opposite effect: for a fixed value of pF, the numerical dissipation rate peak would be
shifted to larger dimensional values of k, i.e. the lower end of the wavenumber band subject to the direct influence of numer-
ical dissipation would be shifted to higher values. Such an observation can also follow from Fig. 2. As already indicated in
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Section 4.3, resolution and filter order are chosen as high as possible within the limits of available computational resources
to allow for as broad as possible a range of resolved scales directly unaffected by the action of the spectral filter.

Using as initial conditions those employed in the actual Navier–Stokes simulations, the numerical viscosity for model
simulations, computed through Eqs. (24) and (27), is shown for the two Re values in Fig. 8. The numerical viscosity is com-
pared to that obtained from a Navier–Stokes simulation using only a Fourier filter as a stabilizer (see Table 1). Normalization
of the numerical dissipation rate for both Navier–Stokes and model simulations is performed using the spectrum Eðk; zÞ from
the corresponding baseline case. For the Fourier-filtered Navier–Stokes simulations the baseline case is the one described in
Section 5. However, note that, for a purely analytical model (26) and (27), the normalization of the numerical dissipation is
performed using spectrum E0 since the baseline case associated with the model preserves the initial energy spectrum. Fol-
lowing the discussion of Section 5 and earlier parts of this section, this choice of normalization is responsible for a local, and
not cusp-like maximum, at high wavenumbers for Re ¼ 105. However, if the normalization were done using the evolved
spectrum (26) a cusp at the maximum wavenumber would be observed in the analytical model of the numerical viscosity.

In Fig. 8, the order of the filter, pF ¼ 20 and 10 for Re ¼ 5� 103 and Re ¼ 105, respectively, dominates the form of the
numerical viscosity function and is responsible for the left-shifted peak in the higher Re case. The normalized numerical vis-
cosity shown in Fig. 8 for Re ¼ 105 is roughly 200 times larger than its Re ¼ 5� 103 counterpart for two reasons. As indicated
in Section 4, the Reynolds number is varied by modifying the physical viscosity, which is a factor of 20 less for the Re ¼ 105

case. Because the numerical viscosity in Fig. 8 is non-dimensionalized by m, the plotted values will exhibit a relative increase
across Re by a factor of 20. Additionally, by means of the CFL condition, the significantly finer grid resolution of the Re ¼ 105

case requires use of a timestep approximately 1/10 the value of its low Re counterpart. An explicit scaling of (27) with the
timestep will further increase the plotted values by the inverse of Dt. Thus, a total increase of an approximate factor of 200 in
mn=m is observed in the Re ¼ 105 with respect to their Re ¼ 5� 103 counterparts. Note that the enhancement of mn=m due to
smaller Dt at higher Re may also be interpreted by considering that the smoothing/dissipative effect of the spectral filter,
which is applied at every timestep, acts over a much shorter interval in the higher Re case. Running the actual Navier–Stokes
solver with the same initial condition and only Fourier-filtering turned on indicates that Navier–Stokes dynamics enhance
the numerical viscosity. Such an enhancement is most likely due to the increase of small-scale energy content through non-
linear energy transfer mechanisms from the larger scales in the flow.

The scale-dependent numerical viscosity induced by individual stabilizers (Fourier, Legendre and penalty) and all com-
binations thereof at the bottom and top interfaces of the central subdomain are plotted in Fig. 9. At both Reynolds numbers,
Fourier filtering produces a numerical viscosity that is distributed across wavenumbers in a manner similar to that at the
center of the subdomain (Fig. 7). The normalized numerical viscosity is negligible at low wavenumbers and begins to tran-
sition above unity at the same value of k=kc for which the corresponding transition happens at the subdomain center. Clearly,
Fourier filtering is the dominant contributor to the numerical viscosity over all wavenumbers at Re ¼ 105 when all stabilizers
are turned on, overpowering the effect of Legendre filtering and the penalty scheme. A similar observation does not hold for
the Re ¼ 5� 103 run. In this case, the numerical viscosity at high wavenumbers exhibits negative values, which signify anti-
dissipative behavior. These negative values are attributed to the penalty scheme, which, when introduced individually, in-
duces a negative numerical viscosity at high wavenumbers (the negative values for the Re ¼ 105 case are more visible in the
right panel of Fig. 10).

The anti-dissipative behavior of the penalty scheme may initially be regarded as counter-intuitive. The basic premise
associated with introducing the penalty terms at subdomain interfaces is that the accompanying penalty terms act to bound
the energy of the discrete equations [25]. One would expect any such action to be of strictly dissipative nature. An interpre-
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tation for the observed anti-dissipative numerical viscosity at high wavenumbers can be offered by recalling that the incor-
poration of a penalty term in the governing equations relaxes the solution at the interfaces by satisfying both equations and
patching condition, thereby weakly enforcing C0 continuity at the subdomain interfaces. The resulting weak discontinuity
observed at the subdomain interfaces automatically generates a small error which is comparable to the order of the scheme
[24]. This weak interfacial discontinuity should lead to an increase of the energy content of the highest Legendre modes as
their fine-scale variation becomes most prominent at these locations [5]. Energy transfer through non-linearity of the Na-
vier–Stokes equations to all other spatial directions will then increase the energy content at high Fourier wavenumbers,
i.e. lead to the controlled accumulation of ‘‘numerical noise”. Obviously, this growth in higher Fourier mode energy content
does not have an adverse impact on the stability of the long-time integration of the Navier–Stokes equations. Nevertheless,
based on the analysis of Section 5, it is manifested as anti-dissipative behavior locally in Fourier space.

Note that Legendre filtering also produces negative values of numerical viscosity at high wavenumbers for Re ¼ 5� 103.
Taking into account the discussion of Section 3.2) on violation of patching/boundary conditions by Legendre spectral filter-
ing, this anti-dissipative behavior may be explained with arguments similar to those used for the penalty scheme. Now, the
equivalent numerical viscosity for the high Re run is distinctly positive with the exception of weakly negative values in the
wavenumber band ½k; kc� 2 ½0:55;0:65�. These distinct differences in the role of Legendre filtering across Re and the persis-
tently anti-dissipative behavior of the penalty scheme at both Re indicate that further analysis, beyond the scope of this pa-
per, would eventually be needed. Such analysis would identify the numerical viscosity induced by these stabilizers as a
function of Legendre mode.

Finally, for the purpose of assessing dependence of the anti-dissipative effects of the penalty scheme (when it is individ-
ually applied) as a function of distance from subdomain interfaces, the total numerical viscosity at the bottom interface of
the central subdomain, and at four mesh points above it, is shown in Fig. 10. The anti-dissipative effects do not persist more
that one point beyond the interface. With increasing distance from the interface, the numerical viscosity exhibits an increas-
ingly weaker positive value. Similar analysis was performed over an additional number of timesteps revealing no significant
difference.
7. Conclusions

In this work we have extended the numerical viscosity analysis from homogeneous, isotropic configurations (i.e. triply
periodic domains) to doubly periodic domains with one inhomogeneous direction. In principle, the approach signified by
Eq. (13), is quite general and can be applied to an arbitrary code as long as an auxiliary ‘‘non-dissipative” case can be con-
structed. The specific numerical code analyzed in this work is based on a spectral multidomain method model stabilized by
the application of Fourier and Legendre filters and a penalty scheme. The primary motivation for using the stabilizing tech-
niques is the need to run the simulations at high Reynolds numbers, often two or higher orders of magnitude greater than
possible without using stabilizers. The stabilizers are applied selectively, only either at the smallest scales, i.e. for wavenum-
bers or polynomial orders close to maximum values, or in the immediate vicinity of domain interfaces and boundaries. It is
thus expected that scales and the physical regions not explicitly affected by the stabilizers are governed by the Navier–
Stokes dynamics and therefore experience only an indirect stabilizer effect. The analyses reported here quantify this expec-
tation in terms of the numerical viscosity that can be attributed to the stabilizers, and which in turn is compared with the
molecular viscosity used in the actual simulations. The method is based on a comparison between the kinetic energy evo-
lution given by the analyzed code and a corresponding evolution obtained using a code that minimizes effects of the numer-
ical dissipation. Ideally, such a code would be fully non-dissipative which, however, is not possible in an under-resolved
simulation employing an element-based spectral discretization. Thus, the baseline code employs only a very weak Legendre
spectral filter which allows it to conserve its energy for a time long enough for the above comparison to be made. The base
flow for our investigations are simulations of the turbulent wake of a towed sphere at two different Reynolds numbers,
which vary by a factor of 20.

Comparing simulations performed with the stabilizers and with the ‘‘non-dissipative” baseline code revealed that the
molecular viscosity in the latter case may be a factor 2.5 greater (for Re ¼ 105) than for the case with the stabilizers in order
to match kinetic energy decay rates. This implies that the global numerical viscosity effects are comparable to the effects of
the molecular viscosity. This observation also suggests that, as far as the dissipative effects are concerned, the simulations at
the highest Reynolds number are not unlike ILES.

When the scale dependence of the numerical viscosity is considered, a qualitatively different behavior is observed in the
vicinity of interfaces and away from them. Over a range of high wavenumbers, whose lower end decreases with increasing
Reynolds number, the numerical viscosity is dominated by the effect of the Fourier filter. A simple model, based on the evo-
lution of an initial condition through only Fourier filtering in the horizontal, indicates that the peak value of the normalized
numerical viscosity scales with Reynolds number and the inverse of the timestep and is located at a wavenumber deter-
mined by spectral filter order. Legendre filtering has a relatively weaker contribution to high wavenumbers but is the dom-
inant contributor at lower wavenumbers, producing a numerical viscosity that may be of the order of multiples of the
physical viscosity. In the subdomain interiors, the penalty method has negligible effects.

At the interfaces, the penalty method unexpectedly induces a numerical viscosity that is distinctly negative over a signif-
icant range of high wavenumbers, i.e., the penalty scheme ensures numerical stability in an anti-dissipative manner. This



P.J. Diamessis et al. / Journal of Computational Physics 227 (2008) 8145–8164 8163
anti-dissipative behavior may be explained by the weak enforcement of continuity by the penalty method at the interfaces,
which allows for weak discontinuities at these locations. As a result, a minute accumulation of numerical noise, and thus
kinetic energy, at the highest Fourier modes could ensue, which nonetheless will not impact detrimentally the long-time
integration of the governing equations. At low Reynolds numbers, Legendre filtering produces comparable anti-dissipative
behavior which may be explained using similar arguments.

The primary conclusion from the analyses of the numerical viscosity performed here is that the effects of the stabilizers
are significant, being comparable, and sometimes larger, than the effects of the physical viscosity. Additionally, while the
stabilizers have an expected dissipative character away from the interfaces and boundaries, a strong anti-dissipative char-
acter is observed at the interfaces, particularly for the penalty scheme. This observation implies that the stability of the sim-
ulations at those locations is achieved not by increasing the artificial dissipation. We believe that relaxing the interface
conditions provides the flow variables freedom to adjust without forcing catastrophic Gibbs’ oscillations leading to discon-
tinuities in the solution. This freedom and resulting discontinuities are manifested in the form of a negative numerical
viscosity.

The findings of this study are only an initial attempt to quantify the effective numerical viscosity in discontinuous high-
order multidomain simulations of complex fluid flows. We have restricted ourselves to working with existing simulations at
previously specified Reynolds numbers, orders of approximation within each subdomain, filter orders and initial conditions.
Beyond the purpose of exactly parameterizing numerical dissipation, it is obvious that for either of the two simulations con-
sidered in this paper, reducing the filter order would increase the numerical viscosity. In contrast, increasing the order of
approximation in each subdomain or reducing the Reynolds number (by increasing the molecular viscosity) would reduce
the degree of under-resolution and thus, clearly decrease the numerical viscosity. Finally, the behavior of numerical dissipa-
tion at higher Re simulations with an initial condition that exhibits an inertial subrange of at least a decade remains to be
determined. For the moment being, we speculate that it may not be dramatically different than that for the initial conditions
of the Re ¼ 105 runs considered here, as it is the degree of under-resolution and not the energy content of intermediate
wavenumbers which we find to be the primary cause for numerical instability in the spectral multidomain penalty solver.

Furthermore, significant insight may be obtained by developing an analysis in Legendre space similar to that elaborated
upon in Section 5. More conclusive statements could thus be made on the Legendre-filter-induced numerical viscosity as a
function of Legendre mode, and particularly about the (anti-)dissipative behavior of this type of filtering and penalty meth-
ods at the subdomain interfaces. The design of such an analysis would require the precise definition of energy of the solution
as a function of Legendre mode and the formulation of an energy evolution equation in Legendre space. The latter task may
be significantly more challenging than in Fourier space due to the more complex properties of Legendre polynomials [5]. We
do plan to pursue research in this direction, especially since it can provide a tool that is generalizable to fluid flow simula-
tions in more complex geometries, which utilize two-dimensional quadrilateral or triangular subdomains [39,18,40].
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